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Abstract—Disks, plates or beams subjected to loading and initial strains or displacements are
assumed to be composed of portions interconnected by hinge or slip and dilatancy lines admitting
discontinuities in displacements or slopes. The shape of such lines and their stiffness properties are
subjected to variation. The sensitivity analysis is first discussed for an arbitrary functional of
generalized stress, strain, displacement and boundary traction. The variation of complementary and
potential energies is considered as a particular case of a general derivation {or sensitivity. The
optimal design problem is then considered and the relevant optimality conditions are derived. The
gencral theory is illustrated by examples of sensitivity analysis and optimal design with respect to
shape, position and stiffness of discontinuity lines {or disks, plates and beams. Numerical aspects
of sensitivity analysis are also discussed.

1. INTRODUCTION

The present work is concerned with disks and plates subjected to stretching and flexure.
Small strain and displacement theory is used. However, the results can casily be extended
to moderate or large deflection and strain theories. When mixed boundary conditions are
imposed or an initial strain field is present, the stress level in the structure can be reduced
by introducing kinematic discontinuity lines, that is slip lines or hinge lines. Along such
lines the displacements or their gradients suffer discontinuities. The elastic energy stored
along the discontinuity lines is a fraction of kinematic discontinuity, and the conjugate
interfuce tractions are generated by the potential constitutive laws. Hinge line or slip line
compliance is therefore an additional material parameter or function.

It is assumed that position, shape and/or compliance of the discontinuity line may
vary, and the sensitivity analysis is performed with respect to these variations, considering
an integral response functional. Next, the optimal design problem is considered, for which
the optimal shape, position and compliance of the discontinuity line is sought in order to
minimize the objective functional.

The present formulation constitutes an extension of a class of problems for which an
optimal location, stiffness and prestress of elastic supports was determined for structures
subjected to both loading and boundary displacements or initial distortions, cf. Mroz (1986,
1987), Garstecki and Mré6z (1987). Optimal design of joints in elastic beams was considered
by Garstecki (1988) where the relevant optimality criteria were derived and applied to some
cases of beams and frames with the initial distortions imposed. A related work by Dems er
al. (1989) is concerned with optimal design and sensitivity analysis of plates and disks
with line stiffeners of unspecified shape, position and stiffness. The line stiffeners induced
discontinuity in surface tractions with continuous displacement fields. In the present case
the tractions are continuous along the kinematic discontinuity lines. Whereas the previous
case involved an additional stiffening or strengthening of a structure by line actions, the
geometric constraints are now relaxed, thus leading to more compliant designs. However,
such designs are requisite when displacement or initial strain fields are imposed. In general
there is a conflicting design situation : for applied loading, a structure should have sufficient
stiffness and strength, for applied displacement it should be easily deformable. For mixed
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type of loading there is a trade-off between displacement and stress levels. so both stress
and displacement constraints should be considered. The examples of design for such cases
were presented by Garstecki and Mroz (1987) and Garstecki (1988).

Though in general the design sensitivity analysis can be performed by using the direct
or adjoint approaches. here, following Dems and Mroz (1984, 1985). only the adjoint
variable method will be applied. This method requires only one additional solution of an
adjoint boundary value problem for each specified functional independently of the number
of design variables or parameters specifying properties and shape of the discontinuity line.

In Sections 2 and 3 the sensitivity analysis for disks and plates will be carried out and
the optimality conditions will then be generated in Section 4. In Section 5 some aspects of
numerical implementation of sensitivity analysis through the finite element method will be
discussed. Several illustrative examples will be presented in Section 6.

2. SENSITIVITY ANALYSIS FOR DISKS WITH DISPLACEMENT DISCONTINUITY LINES

In this section, we shall consider a disk occupying the domain 4 with the boundary S
(cf. Fig. 1a), which is subjected to stretching within its plane. Let us assume now that there
cxists within the disk domain 4 aline I, along which the displacement vector u can undergo
some discontinuitics while the tractions N transferred across the line are continuous. The
generalized strains, stresses and body forces within the disk domain will be denoted by q,
Q and £, respectively. Furthermore, it is assumed that the disk can be subjected to imposed
ficlds of initial strains and stresses @' and Q' caused. for instance, by temperature fields or
assemblage errors. The disk is loaded by the surface tractions N along boundary part S,
of its boundary S, while on the remaining boundary portion S, the displacements @ are
prescribed, so that § = S0 8,

The gencralized nonlinear stress-strain relation within disk domain is gencrated by
strain potential, such that

_U'eq.Q)

oq = S(q.q'. Q') within A4 (1)

Q

where U denotes the specific strain energy per unit disk area. The incremental form of eqn
(1) can be expressed as follows:

dQ = D-dq+Z-dq +L-dq ()

where

Xy (a) (b}

Fig. |. Thin plate with discontinuity line (a) and its model (b).
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and the dot between two symbols denotes the summation with respect to indices of lower
order tensors. For a stable elastic material, D is a symmetric and positive definite tangent
stiffness matrix. whereas Z and L represent the increments of elastic stresses due to
increments of initial fields ¢’ and Q'.

Let us now denote by v the jump of displacement vector u along the line I', which will
be called the discontinuity line (or slip and/or dilatancy line depending whether the tan-
gential or normal displacement component suffers discontinuity). Thus, we can write

v(x) = [u(x)] = uy(x) —u,(x) xel 4

where u, and u, denote the disk displacements on both sides of line I'. In what follows, we
assume that the discontinuity vector v is related to continuous internal tractions N along I’
through the generalized nonlinear relation which can be generated by the potential U,
such that

Aprb
LU = C(v.¢}) along )

ov

where ¢ denotes the set of design variables or parameters modifying the material properties
of discontinuity line . In order to simplify our analysis, we do not imposc any restriction
on the sign of the discontinuity vector v along I'. The unilateral counstraints are thus
neglected in this analysis. The incremental form of eyqn (§) can now be expressed as follows :

dN = E-dv+H-de (6)
where
aCc aC
E=% M= @

denote the increment of internal tractions due to increment of discontinuity vector v and
of design variables ¢, respectively.

For such disk, the boundary-value problem can be solved for a specified geometry,
loading und material properties of disk and discontinuity line and then the stress, strain
and displacement distributions can be determined. Consider now a more complex problem
when the material properties and shape of discontinuity line are not specified in advance.
The major question can be posed as how the state fields or some global functionals are
modified due to variations of material and geometrical properties of the discontinuity line,
In analyzing this problem, we assume that besides the dependence of eqn (3) on a set of
material design variables ¢, the shape of line T is dependent on a set of shape design
functions @,(x), £ = 1,2, xeI (cf. Fig. 1b). When the shape of I' undergoes the shape
variation d¢(F), it is also assumed that the disk domain 4 may undergo the infinitesimal
transformation de(A), where dg is a differentiable vector field satisfying the conditions

Sp(A) = dp(I") forxel, dp'n=0 forxes. ®)

Thus the external disk boundary does not undergo any normal shape transformation. On
the other hand, when the discontinuity line penetrates the external boundary, the tangential
shape transformation may occur. In this case, the additional constraint on the vector field
d¢ at the end points of [ is to be imposed, namely
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S, -+ 00, cot x = 1) {9)
where d¢, and do, are the tangential and normal components of shape variation of I and
x denotes the angle between [N and S (cf. Fig. 1b).

Due to infinitesimal transformation of discontinuity line shape. the variations of
orientation of the local coordinate system a.t and of line length dI” and its curvature K
occur, that is (cf. Dems and Mroz, 1984, 1987):

ot = (Ko, +0¢, ). on = ~ AP, +00,,)
SHdD) = (do., ~ Kde,). K
HdAY = 0 dud {10y

Il

('\‘_‘(i(f).; **}" K :QS(;'}” + f:(pm\\,

where 5 denotes the line parameter. ¢ is the total variation of any vector quantity and ¢
denotes the variation of any scalar quantity.

In performing the shape sensitivity analysis. following Dems and Mroz (1987, 1989)
and Dems et al. (1989). besides the total variation of of any vector or tensor field f, we
introduce the local (i.e. for unperturbed domain) variation f of this field with respect to
fixed Cartesian coordinate system {x,.\v;), as well as the corotational variation of with
respect to local coordinate system (n.t) moving together with transformed discontinuity
line T or external boundary S, The corotational variations do not take into account the
rotation of coordinate system during the transformation process. ' we denote the com-
ponents of T with respect to ixed coordinate system by £ ¢ = 1, 2, and with respect 1o local
system by £, o = a5, then the relations between total local and corotational variations of
field fcan be written as follows:

O =S f+fudpe. Of, = S E AR, ¥,

df = df (Ko, +3p,.). (i

Consider now any statically admissible stress fickd Q and kinematically compatible
strain ficld ¢*. In view of equilibrium cquations, strain displacement refations and eqgns
{10) and (11), the virtual work equation for simultancous variations of kinematic ficlds and
shape of discontinuity line can be written n the form

K3
{

f(Q‘ . ()?qk — £ dut) dof + f;\’,‘,,(()'z"; — b B dl— | N (0l — et S, )dS

-~

+J {—eh{f(‘lv:nivg).\d(pn +e 12;‘;’("\(::xg.}“\é‘!’)u).‘\l d r (U. /} = “‘*Y) (12)

where N}, are the local components of surface tractions along line I and S, t and ¥ are
the local components of displacements along § and their jump along [ and ¢, denotes the
permutation symbol. Equation (12) will be applied in deriving the sensitivity expressions.

2.1, Sensitivity analvsis for an arbitrary functional
Let us now consider the functional

~

G = J‘{’(Q, q.f.u, Q*.qi)d‘4+J N, u,)dS+J D(N,,.r,,0)dl (13)

where N,,, u, and ¢, denote the components of respective fields in local coordinate system
n.t along S and I". We assume furthermore that ¥, 4 and ® are continuous functions of
their arguments, and that domains of integration A, Sand I’ depend on the transformation
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vector field @(x) assoctated with modification of shape of discontinuity line I'. The variation
dp(x) satisfies conditions (8) and (9).

The main purpose of this section is to determine the first variation of functional (13)
associated with the variations of transformation field ¢(x) and of the set of parameters ¢
along I'. using the adjoint variable method. To start our analysis, let us introduce, besides
the primary disk for which functional (13) is considered. the physically linear adjoint disk
of the same geometry as the primary one. The adjoint disk with prescribed displacements,
#*, on supported boundary part S,. is loaded by surface tractions N* on the remaining
boundary portion S7 and body forces f* within its domain 4. Moreover, we assume that
there exist the imposed fields of initial strains ¢* and stresses Q* within disk domain 4. and
initial jump of displacements v and initial continuous tractions N* along discontinuity line
I". The stress field Q' within the adjoint disk satisfies the equilibrium and boundary
conditions. and the strains q* follow from displacement field u* within 4 with the jump v*
along I'. The generalized stress-strain relation for adjoint fields within 4 and the relation
between the jump of displacements and continuous internal tractions along discontinuity
line I are assumed in the form

QJ - Df”,(qd_qai)_Q.u within A
N = E7 (v —v")—N" along [’ (14)

where the matrices D and E are specified by eqns (3) and (7). In view of virtual work
equation for primary static ficlds and adjoint kinematic fields, the functional (13) can be
rewritten in the following extended form :

G = J“l‘ d.A4 +jlx d.‘)’+f<l’ dl"—f(()'q“ ~f-u')dd —fN‘\"' dr+fN'u“ dS  (15)

in which the sum of last three integrals on the right-hand side is equal to zcro.

Consider now the first variation of functional (15). Following the analysis presented
by Dems and Mroz (1989) and using eqns (10) and (11), the first variation of (15) can be
presented as follows:

3G = j(\;{‘, QW S+ S, Sut Wy 5Q
+¥ - 0q')dA - Ji‘?ﬁéi’pu dr+ f [hy, (0N, ~ N, 00,)
+h,, (Su, —u, ,00,) + (hdp,) ] dS + f[‘b.,~'n, (0N =N, 00,)
+®, (6v, —1,,50,) +(Ddp,) , — K@, dT + f O, (dc+d,¢)dl
- f (0Q-q"+Q-dq" —f-u* —f+Su) dA + J (1Q q*]-[f-u*]éep, dT"
- f[( ONpe = Now . 0p )05 + N,u (305 = 13,80,) + (N, 1300,)

- N,,.,l': [\’6“)"] d r + J‘[(d{an - IV’IIJ(s(/)t)ll: + (an(é”: - u:,r(s‘p.r)

+{(Nni:00.) ] dS (16)
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where [ -] denotes the jump of enclosed quantity along I, calculated as its difference on
the mzht and left side of I, oc is the local variation of parameters ¢ for unperturbed shape
of discontinuity line and d,¢ denotes the variation of ¢ due to normal shape variation of I

Using now the incremental forms of constitutive equations (2) and (6) of primary disk
and constitutive laws (14) of adjoint disk. one can write
(S_Q.q.x = Qa.5q+Q.xx .5q+qu.5Q - (qa__qm).(L.oTQx_{‘Z‘gqx) within A
SNt = N230, + NIOr, 050N, + (12 — eV H , (0¢, +0,¢))

N A =) = (N + N 80, along T (1T

Now, we can substitute relations (17) into eqn (16) and apply to it the virtual work egn
(12) twice. We first write eqn (12) for primary static fields Q. f. N and adjoint kinematic
fields g, u’. v*, and next use it for primary kinematic fields q, u. v and adjoint static fields
Q. £*, N*. After some transformation, the first variation (16) of an arbitrary functional G
takes the form

oG = j z({“;‘ +\{l.l,)(;/; ‘f‘[‘P.Qif - (‘!}:1“113;)L1;k1](§Q;;
+ [\[‘ @), (/U “"([Al)/uf\/]()ql/i d.1 +J (h ¥, +“ )(()AV,,, - nx v‘)(p )d SI'
+J (I, = N Ou, —u, S ) dS, + J‘[(h + N o], dS

+ j U= K~ | fan ]+ [ Quitr] + Nt lK = N,
. IV;:xl‘x‘n + 4 \x]i‘(‘lvrn!“(lf + ."V;:‘l'“)._\.]()‘([’,, + [((D - Nnxp: )‘s‘/’\

4 \x/l(Nnrl‘?{ + JV;:}F,“)(S(/)H].,\‘ : d N + _{‘[(D.‘/ - (1: - l'.*:.)llx!]
X f‘g"i +0,0,) dT + J‘ i {\ij&)n - ‘."?;)‘;.Q:; + (\FH., - Q;‘;)‘;’t/u
+(p, —S you, PdA+ J'(;Mm + 1SN, — Ny 003 dS,

+J‘(/{“‘ — NI W Oou, —u, 0 3dS, +J [{(D s —THON,, — N,y ,00.)

+{®, — Nior, -, 99 )| dl (18)
The last four integrals on the right-hand side of eqn (18), depending on local state field
variations of the primary disk within its domain .4 and on corotational variations of state
fields along boundary $ and discontinuity line [, vanish when the imposed initial ficlds and
boundary conditions of adjoint disk arc assumed in the form
gy =W, Qy=Y¥,. fi=", wihnd
i, = —hy onS,. N3 = h, onSy

=b, ., Npy=®, alongl. (1

Making use of conditions (19) and integrating some terms of eqn (18) along S and T, the
first variation of G is finally expressed as follows
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0G = J'{(“,a +‘P./,)5.ﬁ+ [\P.Q:, — (G — kil)Lin]gQi:j
+ [‘P*":/ - (q:l hae qlatil)zljkllé-q‘i/} dA + J(h-Nu + u:)(éNnu - ‘VnaJé(ps) dST
+ J.(h,u, - N::)(‘suz - uzJé(p:) dSu - z I[(h + N,,,u:)&p,]] | Pi
k

+ f[ - ﬂ:‘{l}] ~-OK— [./;u:]] + [[Q:ﬂq:ﬂ]] + NnaU:K_ Nnav:.n

- N:uvz,n + e}aﬂ(le.; + N:,UB)J](S([),, dr— Z ‘I((D - anvi)&l’x
k

—ekﬂ(mev; + N:ul‘ﬁ)é(pnI”P{ + J[w.c, - (U: _U:i)Hxl]

x (0¢,+0,¢,) dr. (20)

Thus. the first variation of G is expressed explicitly in terms of shape and material variations
of discontinuity line, and depends on solutions of boundary value problems of primary and
adjoint disks. The first three integrals on the right-hand side of eqn (20) express the share
of 8G caused by influence of shape variation of the discontinuity line on distribution of
initial strains and stresses within disk domain and boundary displacements and tractions
along parts S, and Sy of its external boundary, respectively. The fourth and fifth integrals
express explicitly the contribution in 6G due to normal shape variation of I" and variation
of its material propertics. Finally, the two remaining terms are the contributions in 6G
when the same singular points P§ and P} occur along external boundary S or discontinuity
line [. In these singular points either the enclosed quantities suffer some discontinuitics or
the lines S and I™ are not smooth.

2.2. Sensitivity analysis for complementary and potential energies

Consider now a particular case when the functional G coincides with the com-
plementary or potential energies of a disk and particularize its first variation associated
with shape and material variations of discontinuity line I'. Such functionals occur in
problems of global compliance or stiffness design. To simplify the sensitivity expressions
let us assume that there are no singular points along S and [, and consider first the
complementary energy of a disk that equals

HQ=JW‘(Q,Q‘,q‘)dA—fN-ﬁdS,,+jW‘"(N,c)dF @1)

where W* denotes the specific stress energy per unit area of a disk and W' is the elastic
stress energy per unit length of discontinuity line. Comparing (21) with (13), we easily
observe that

W W withi i —N:d onsS, -
= within A, = 0 on S’ ®&=Walongl, (22)

and then, according to (19), the adjoint disk has to satisfy the following boundary
conditions:

i=d onS, N*=0 onS, (23)
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while the imposed initial fields are

&F

q* = H"b =q. Q*=0, f*=0 within 4

vi= KB =v, N"=0 alongl. (24)

Thus, the state fields within the adjoint disk are expressed in terms of solutions of primary
disk. and they take the form

v =u ¢'=¢q Q' =0 withind

vi=y, N'=0 alongT. (25)

In view of (22)-(25). eqn (20), expressing now the first variation of I, is simplified as
follows

oTl, = j‘ (S f;+ Wi 500+ W 3¢, ) dd + Ju,(éivn, = N,..00,)dS;
- jh’,,,(éu, — 11, 09 ) dS, + f{ =W+ ][Qugus] - [ frtta] + (Nt = WHK

=N Uyn €15 (Natg) 00, dT + J W'SI((;(', +d,00dl. (26)

Assume now that the functional G coincides with the total potential energy of a disk
and is expressed as

I, = j[U"(q. Q.q)—(-ujdA— JR “u dS,-+jU“(v.c) dr 27

where U? and U' denote the specific energies per unit area and length, respectively.
Comparing (27) with (13}, we have

4 ithi / 0 oM pyr r 2
¥Y=0U"-f-u within 4, h= —N-u onsS, o =U" alongl, (28)

and then, the adjoint disk is subjected to the following boundary conditions and imposed
initial fields

=0 onS,, N=-N onS,

=0, Q“=U!{=Q, f*=U%=~f within 4

=0 N"'=U =N alongT. (29)

The solutions of the adjoint disk are expressed in terms of primary state fields, namely

=0 g =0 Q =-Q withind

v =0, N'=—N alongTl, (30)

and eqn (20). expressing now the variation of I1,. takes the form
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of, = j( ~ud fi+ Ut 605+ U 5q,) dA -Ju,(éN,., ~Nyoi00,)dSr
+JN,.,((5u, —u,,59,)dS, + j (-[U*]-UT)K+Nor.,
—30(Nualp) 160, dr+fU§,(5q+a,c,) dr. (1

It is easy to verify that [, = — I, since W*+U"* = Q-qand W'+ U" =N-v.

3. SENSITIVITY ANALYSIS FOR PLATE WITH KINEMATIC DISCONTINUITY LINE

Let us discuss in this Section the case of bending of a plate and derive the sensitivity
expression for an arbitrary functional with respect to change of shape and material prop-
erties of kinematic discontinuity line within its domain.

The geometry of a plate is shown in Fig. 1. Denote by M = [M,] = [M,4] and
x = [x,,] = [x,4] the generalized stress and strain tensors within plate domain, where, as in
Section 2, the subscripts i, j denote the components of a proper tensor with respect to a
fixed Cartesian coordinate system, and the subscripts «, f denote its components with
respect to local system n, t. The generalized displacements and surface tractions are denoted
by w and R, where

and Q, M, are generalized sheur force and bending moment, respectively. The plate is
subjected to a transverse load p, whereas the generalized tractions R are specified on external
boundary part S, and the generalized boundary displacements w are specified on the
remaining part S,. Morcover, the plate can be subjected to the imposed fields of initial
strains «' and stresses M'. The generalized stress-strain relation within the plate domain is
assumed in a form similar to (1), namely

AU (x, ', M' o
M = ...(.{...(%_;(_____2 = S(K, xl, MI) (33)

where now U denotes the flexural specific strain energy.

As in Section 2, let us assume that the generalized displacements w along discontinuity
line I' within the plate domain can suffer some jump in deflection w and/or its normal
derivative —w,, which will be denoted by v(x) = wy(x) —w,(x), xeI". The surface tractions
R along I are still continuous and they are related to the kinematic discontinuity vector v
by the relation similar to (5), namely

_ U (v+¢)

R v

= C{v,¢). (34)

Assuming now that the discontinuity line I’ can undergo the shape variation satisfying
conditions (8) and (9), the virtual equation for simultaneous variations of kinematic fields
and shape of I, in view of eqns (10) and (1), can be written in the form
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~ -
{

J (M- OK* —p* - on*)d A+ f RY(6t% —1%,0¢,)dl - | RI(Ow —w* 50,)dS

o

-

= J (M0 —t560,) + (M5 — M5)00,], dr*f{ﬂli,(éw" ~wide,)], dS. (35)

where the statically admissible stress field M® satisties the equilibrium and boundary con-
ditions and «* is kinematically compatible curvature field. Equation (35) will be used in the
next section for determining the sensitivity expression.

As in Section 2, besides the primary plate, let us introduce an adjoint plate of the same
geometry as the primary one, with imposed fields M*, ™ of initial stresses and strains
within plate domain 4 and initial jump of displacements v* and initial continuous tractions
R* along discontinuity line [". The adjoint plate is subjected to the lateral pressure p* within
A and surface tractions R* along Sk with prescribed displacements &' along S.. The
particular form of loading and supporting conditions as well as initial fields depends on the
functional to be considered and will be specified later on. The constitutitve laws for the
adjoint plate are assumed in the form similar to (14), namely

M = D7 - (1" — k™) =M  within 4
R*=E"-(v*=v")—=R" along I' (36)
where now D = 08/dk and E = 2C/2dv tollowing on from cqns (33) and (34), and can be
regarded as the tangent stiffness matrices at the solution point. The stress ficld M* satisfics

the equilibrium and boundary conditions, whereas the adjoint total strains ¢* follow from
adjoint displacement field w'.

3.1, Sensitivity analysis for an arbitrary functional
As in Section 2, consider now the functional

G= jW(M,x,p, w, MY, k') dA +~Jh(1€‘=,w:)dS+J<b(R:.v¢.c)dl” (37)

and derive its first variation with respect to variations of shape and material propertics off
discontinuity line [". The extended form of functional G, which constitutes the base for our
foregoing analysis, in view of the reciprocal theorem, can be written as follows:

G::j¢dA+JkdS+j(Ddl"—-J.(M.xa__pw,)dA

- J [Rev* —(M,.r*),]dl+ J R-w' — (M, »n'),]dS. (38)

It is obvious that the sum of the three last integrals on the right-hand side of eqn (38) is
equal to zero, and so expressions (37) and (38) are identical.

Following the analysis of Dems and Mroz (1989) and using eqns (10) and (11), the
first variation of (38) can be written in the form
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3G = f (P OM+W, Ok +¥,0p+¥ 0w+ W OM + ¥ . 5x) d.A
- fﬂwﬂé(pn dr+ j[hR:(éRﬁ - Rnf_\‘é(ps) +h.w‘.(5w.‘ - wi.:(s(p:)
+ (h(s(p:).:] dS+ J'[(DR‘((SRC - R:.Jé(ps) + (D.L':((sv{ - l.:..\'&(ps) + ((D(S(pv).:

—®Kdp,]dl + j @, (dc+0,0) dF—f(M- ot — pow*)dd

~

— | RS2 —1¥,00,)dT + j R (8w} —wi 3¢p,)dS— J(SM k* —dpw)dd

r

— | (OR:— R0 )t dl + J(éR: — R Sp)wi dS+ J([[M ‘] =[pw* o, dT

r~

— | (R.t360,), dr+J‘(R¢w‘§(5(p‘,)_r ds+fkcngms(p, dr

~

+ [ o(M,,eY)], dr—J[<5(hl,,vt"‘)]__, ds. (39)

LY

Using now the incremental form of constitutive eqns (33) and (34) of a primary plate, and
applying eqns (36), the following identity can be written:

J-(OTM“ K= Spw)dA+ f OR. — R, dp )" dlM = J(M" - Ok — p*ow) dA
+f[,f5w-o’pw“ +M¥ 0K+ K4 IM + (k* — k") + (L - SM' + Z - 5K')] d A

+ f[R?(b’v; —v:,00,)+ R¥(dv; — v, 00,) + VY (OR, — R ,00,)
+ (0 —$) H o, (3¢, +8,¢,)] T (40)
where

s S oC
L= s = —, H=—. 4
% Z ok’ de @D

Next, eqn (40) can be substituted into eqn (39), and the principle of virtual work (35) can
be applied in order to climinate the terms involving the variations of kinematic fields of
primary and adjoint plates. Thus, after some transformations, eqn (39) finally yields

°0= {f{(‘v, + )P+ (¥ a0 — (6 =) - L] - SM
H [V — (' — k") Z] - 56} d A + J.(lz.,,: +w)(OR,— R, ,0¢,)dS,

+ j("-"‘: —RYOw; —w S9,)dS, + I{ =[¥]+M-w]~[pw]
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+{R-v' —D)K — Riréﬁ - sz'ii,, +{M, )+ (.'W?,,.{‘J)J}é(p,, dr

=¥ R = Mo = M 00,1 s = Y (@ — Rt + M0
X k

+ “[:»{‘.x)‘j(p\ - (j[nnt‘i - *"'[q.vt.fn + i"{:an - “'Iﬁst‘,n)é(pnﬁl P:

-

+J [®, — (=P H)(d¢, +,¢,) dr}+ j {(fq—K")* oM

-+ (‘y‘u '“Pd }'5! ; d“{ + “{h‘f(: + "”?)(‘SR.? - R:J(S(PS) dS»

v

~

+ J (. = R)Ow: —w:,00)dSg + J [(®g, — ¥R~ R, 09,)
+(b, — RO, ~r. dp)]dl. (42)

The last four integrals on the right-hand side of eqn (42) vanish when the boundary
conditions and imposed initial ficlds within the adjoint plate are specified as follows:

W=l onS.,. R'=h,. onS,
wp =Wy o M=, p'=W¥, withind
Y=, RY=¢, along T (43)
Thus, in view of conditions (43), the first vartation of an arbitrary functional G is expressed
by the terns in square brackets of eqn (42) and depends explicitly on shape and material

variations of discontinuity line I, integrands of functional ¢ and their derivatives as well
as on solutions of primary and adjoint plates.

3.20 Sensitivity analysis for complementary and potential energies

Consider now a particular form of functional G, when it cotncides with complementary
or potential energy of a plate. Assume, for simplicity, the homogencous static boundary
conditions along external boundary S,. Morcover, let there be no singular points P, along
boundarics vy und I, The plate complementary energy is expressed in this case as

1, = JW*(M, M’ x')dA +JPVF(R,c)dF—JR:»I'¢ ds.. (44)

Since, by compuring (37) with (44), we have

0 on SR

W= within A, h= {—R i on S O =W" along T, 43

then, according to (43), the following conditions have to be imposed on the adjoint plate

Ww=w onS, R' =0 onS,
K= Wi =k, M"=0, p*=0 within A
v=Wi=v., R"=0 alongl. (46)

Due to conditions (46), the solutions of adjoint plate can be expressed in terms of primary
ficlds and they take the form
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w=w, K=k M =0 within 4

v=v, RR=0 alongT.

Substituting (45)—(47) into eqn (42). the first variation of I,, can be written as

oMy = j (wp+ Wiy - SM + W+ 5x) d A —fR: (Ow:—w:,09,)dS,

DT Tl Ry K= R,

+(M,r,). 00, dI"+ J W.f-,(‘j—"j +9d,¢;)dIl".

On the other hand, the plate potential energy is given in the form
I, = J.[U"(x, M k') —pn]d4 +JU"(V. ¢)drl.

Comparing now (33) with (49), there is
W=U'-pw withind, h=0 onS, ®=U" alongl
and conditions (43) yicld

w'=0 onS, R =0 onS,
=0 M'=U%=M, p*=—p within 4
V=0, R"=U[=R alongl.

Thus, the solutions for the adjoint plate now have the form

wi=0 &=0 M =M within A
v=0 R'=-—R alongl,

and the first variation of [1,,, following on from eqn (42), is expressed as
o, J( —wop+ Udy M + Uk - ox') dA +JR:((5|\'¢ —w;,0¢,)dS,

+J{ ~[u*]~[pw] - U K+ Ry, — (M)} 00, dT

+ J. US (3¢;+68,c;) dT.
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(47)

(48)

(49

(50)

(50

(52)

(33)

Noting that W4+ U4 = M-k and W'+ U = R-v, we can easily verify that 6I1,,—6I1,.

4, OPTIMAL DESIGN OF DISCONTINUITY LINE

The typical optimal design problem involves minimization (or maximization) of any
objective functional subject to the set of global or local constraints. When the global
structural cost is to be minimized, the global constraints can be imposed on generalized



450 K. Dems and Z. MrOz

strains, stresses or displacements. An alternative formulation would require the mini-
mization {or maximization} of an arbitrary functional of generalized stresses. strains or
displacements. which can be expressed in the form similar to (13) or (37). In this case. the
constraint can be set on the upper bound of the structural generalized cost, that is

-~

min. {or max.) G subject to ¥ ~ ¥, = J kieydll <0 (54)

where k(c) denotes the specific generalized unit cost of discontinuity line I and 7, is a
prescribed quantity. Introducing the Lagrange functional

G =G+ilh — 5, +p) (55)

where £ and f denote the Lagrange multiplier and slack variable, its stationarity condition
yields the following optimality conditions:

0.G = —a0. 4, 0,G= —Aid, A (56}
with the switching and constraint conditions of the form

=0, SMH = A+ =0 (57)
Here 8,6 and 8,6 denote the variations of functional ¢ with respect to variations of material
parameters and the shape of the discontinuity line, whereas

SH =8, H 4, H = j k. (3¢, +8,c,)dl — j kK, 4T =Y [k80. ]} 1. (5%)
i

The objective functional G can express, in integral form, both local and global quantities
depending on generalized stresses, strains or displacements of a disk or plate. Consider, for
instance, the minimization of maximal local displacement component u, within disk domain
A. The objective functional can be represented here by

bop
G= Hw' dAJ . (59)

since for p tending to infinity, G is tending to ™, Similarly, the maximum local stress
component or generalized stress intensity can be obtained by considering the functional

ip
G= {J‘W(Q)M} (60)

where p is even and W is assumed to be 4 homogencous function of generalized stresses of
the first order. In fact, for p -+ oo, G — sup. ¥, that is the functional tends to the maximum
value of its integrand. Another method is to apply the penalty approach. Namely, intro-
ducing the acceptable stress intensity level W, we can consider the functional

dA. (61)

For p — oo the integrand |'¥/,|” tends to zero for W/W, < | and tends to infinity for
w/ye > 1. This provides a proper penalty functional which for large p takes very small
values when ¥ < i, and very large ones when i > 1.
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Fig. 2. Generalized stress-strain relation without initial strain (a) and with initial strain (b).

In a similar way we can convert any local quantity ¥(x,) specified at a given point x,
of a structure into the form (15) or (37). Using the well known property of the Dirac delta
function, one can write

Y(xo) =G = j?(x)é(x—xo)dA (62)

and the sensitivity analysis can be performed similarly as in Section 2 or 3.

Let us now discuss the problem of mean compliance (or mean stiffness) design of a
disk or plate with discontinuity line when both the external loads, initial distortions and
boundary displacements arc imposed on the structure. We follow here the consideration
carricd out by Garstecki and Mroz (1987). Consider a disk (although the foregoing analysis
is also applied to a plate) and assume that the constitutive laws (1) and (5) are gencrated from
the strain or stress energy potentials which are positive-definite homogeneous functions of
the order n/(n— 1) and n, respectively. Thus, these equations are assumed to be of the form
(cf. Fig. 2)

) aU/‘ e
Q=0 =s@-q) = @) = =&
A <
q9—q =q =S"'(Q°) _ Q) within A4

oQr

Q¢ = = U“(q) = nW*(Q")

U, IWT(N,
N=C(v,c)=—q—a(v—vc—), v=C“(N.c)=———5%4—i) along I’
N-v ='T'_'—lur(v,c) =nW (n,c) 63)

where Q = Q° are the statically admissible elastic stresses, while ¢ = q—q' denote the elastic
part of total strains q. and U*(q°) and #*(Q") are called the specific elastic strain and stress
energies, respectively.

The measure of mean structure compliance, considered as a work of external load due
to induced displacements, can be expressed as
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C=jN‘ud5+[f‘ud‘4. (64)

Assume first that there are no distortions within disk domain 4 and the disk is rigidly
supported on boundary portion §,. Thus the work of external forces is expressed by

C=jﬁ‘ud57+jf~udA. (65)
The potential and complementary energies are
mn, = J(U" ~f-u)d4 +jur dF-—JAN-u ds,, My = JW“‘ dA+er dr.  (66)
By using the reciprocal theorem and eqns (63), it follows from eqns (66) that

|
m, = —fT[JU“dA+jUrdF}:—;C. ﬂngﬁ"d,4+jwfdrz£C. (67

Thus, both the potential and complementary encrgics are proportional to C and they cun
be regarded as measures of mean structural compliance. Equations (65) and (67) yicld then
the following equivalent formulations of optimal design :

min. C = min. [T, = max. [1, = min. {JW‘ dA+fW" df’}

= min. {JU“ d.ﬂi+‘{b"“ df'}. (68)

Consider next the case when the external load vanishes and the disk is only subjected
to nonvanishing distortions and boundary displacements. Thus, the mean structural com-
pliance is now expressed by

C= jN-ﬁdS,, (69)
while the potential and complementary energies equal
M, = JU‘ dA +’[Ur dr, T, = f(W"q»Q“q‘)dA-f—JWr dI‘—J.N-ﬂ ds,.. (70)
In view of eqns (63), these expressions can be transformed as follows :
y r n-1
I, = | UAdA+ U dI‘=——;——C
-1
My = —(n—l)[jW" dA+JW’ df]: —nTC, {(71)

and once again they are proportional to C. The following equivalence of various optimal
design formulations now occurs:
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min. C = max. [1; = min. [, = min. U.W‘ dA-f—J.Wr dl'}

= min. {JU‘ dA4 +j‘(/r dr}. (72)

Comparing (68) with (72), it is seen that when the complementary or potential energies are
to be assumed as the measure of mean compliance of structure, there is a conflicting
situation in which both external loads and distortions and boundary displacements are
imposed simultaneously on the structure. In fact, when, for instance, the total comp-
lementary energy is to be minimized, the structure attains minimal compliance for the case
of applied load and maximal compliance for the case of imposed distortions and support
displacements. Thus, for the case of simultaneous action of both loads and distortion and/or
support displacements, the potential and complementary energies are not proper measures
of structure behaviour. Instead of these, the total elastic strain or stress energies could be
used as such measures, although there are no direct relations of these energies to the
potential and complementary energies.

Following Garstecki and Mroz (1987), we can apply formally the concept of multi-
objective vector optimization and use the compromise formulation by introducing the
objective functional in one of the following forms:

G, = —all, = IT{ = aIT, — BITY @3
or

Gy =aW '+ W =o' +pu' (74)

where the total elastic stress and strain encrgics arc
W:J‘W" dA+erd[". %:fU‘dA+JUrdF 75)

and @ >0, >0, a+f# = 1. Superscripts | and d denote the energy portions calculated
scparately for the case of applied loads and distortions and/or support displacements. For
nonlincar elastic structures, the mechanical interpretation of G, and G, is not clear.
However, for linear constitutive relations and o = f§ = 1/2 the functionals G, and G, are
equal and proportional to the total elastic energy of structure. Moreover, for physically
and geometrically linear structures, the total stresses Q = Q° and strains q° can be regarded
as superpositions of stresses Q' and strains q” due to applied loads, with vanishing dis-
tortions and support displacements, and stresses Q°! and strains q*¢ as corresponding to
imposed distortions and displacements, with vanishing loads. In the same way, the total-
elastic energies can be decomposed, namely

w(Q) = W(Q)+¥(Q), %) =%@q")+%(q"). (76)

Furthermore, it can be observed easily that the total elastic strain and stress energies can
be regarded as the sum of partial potential or complementary energies, namely

2(q°) = I (@) - TL(g"), #(Q°) = [T,(Q") —IZH(Q™). 7

These properties provide good compromise measures of structural behaviour in the case of
conflicting design objectives, namely the total elastic strain or stress energies #(q°) or
% (Q°) specified by eqns (75) and satisfying the additivity conditions (76). Moreover, these
energies are not sensitive to the sign or direction of distortion and load vectors.

SAS 29:4-D
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{a) (b}

Fig. 3. Discretization of plate (a) and linking element (b).

5. NUMERICAL IMPLEMENTATION OF SENSITIVITY ANALYSIS AND OPTIMAL DESIGN

As it was shown in previous sections, the sensitivity information on any functional can
be obtained as the result of solutions of primary and adjoint problems. Both analysis can
be performed by using the analytical or numerical methods. When, due to complexity of
the problem at hand, the numerical method of solution should be used, the most common
possibility is to usc the finite element method or boundary element method. Since the
detailed study of various numerical approximation schemes is beyond the scope of this
paper, fet us discuss only some aspects of numerical implementation of sensitivity analysis
through the finite clement method.

The approximate finite element model of a disk or plate should ensure the possibility
of a jump in generalized displacements along discontinuity line I, retaining simultancously
the continuity of internal tractions. Thus, when the disk or plate domain can be approxi-
mated by any kind of finite disk or plate clements, the special attention should be paid to
modelling of discontinuity linc through onc-dimensional linking elements, for which the
constitutive law is expressed by eqn (§) or (34).

Let us now discuss the derivation of a stiffness matrix of such linking clements for the
case of disk subjected to stretching. The similar analysis can also be easily performed for a
plate subjected to flexure. Assume that both disk domains A, and A, are approximated by
a sct of three- or four-node finite clements. Along a discontinuity line I the set of one-
dimensional linking clements is introduced {(cf. Fig. 3a), which carries into effect the
discontinuity of generalized displacements across I, retaining the continuity of internal
tractions. Each linking element has two nodal points at each end (cf. Fig. 3b}, and the nodal
displacements and forces of element ¢ are denoted by {A®} and {F7}. The displacements on
the right- and left-side of boundary I[® and their jump can be expressed in the form

(W} =[y7Ha) W) =171
(e} = (W= (W} = (= LD AT = LrIEaT) (78)

where [ 4 '] denotes the common set of element unit functions. Let now the constitutive law
(5). relating internal forces {N°} to the jump of displacements {v°}, be assumed in the form

(¥} = [C({ef} ol "} 9

The virtual work done by internal forces {N°} and nodal forces {F~} are cqual:
j{ér‘}’“{:\”}dr‘ = {5A°}“‘”JM‘}"’[C]{J‘}dF°{A‘}, {6A°}T{F°}. (80)

Comparing the work of both these, the following equation can be obtained:
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k(A% = {F} 81

where the stiffness matrix of a linking element ¢ has the form
(k] = JL"]T{C (e}, o+ ]dre (82)

Assembling the stiffness matrices of all disk and linking elements, the total stiffness matrix
[K] can be obtained and the analysis of the disk can be performed. The solution of the
primary problem is then described by a matrix equation:

(K({ADI{A} = {F} (83)

where {A} denotes a vector of nodal generalized displacements and {F} is a vector of nodal
generalized forces due to external load. When the problem is linear, eqn (83) can be solved
in one step, while for physical nonlinearity the iterative algorithm should be used. Knowing
the solution of the primary structure, the nodal forces {F*} of the adjoint structure due to
applied adjoint load and the adjoint initial strains and/or stresses and body forces can be
calculated and next the adjoint linear structure can be solved by using the matrix equation

(KA} = {F). (84)

We should note that the adjoint stiffness matrix [K*] and primary stiffness matrix [K] at
the solution point are the same, in which case the cost of the adjoint solution is considerably
reduced. Using the nodal values of primary and adjoint displacements the strain and stress
ficlds of both primary and adjoint structures can be casily calculated in post-processing
procedure, and the numerical approximation of sensitivity expressions (20) or (42) can be
evaluated. Since these expressions depend mainly on stresses and strains evaluated along
the discontinuity line, their numerical approximation requires us to calculate the stress
distribution ulong clement boundaries adjacent to . In order to improve the accuracy of
caleulated boundury stresses the Loubignac’s iterative algorithm {cf. Cook, 1982), can
be, for instance, incorporated into the solution algorithm for both primary and adjoint
structures.

6. SENSITIVITY ANALYSIS FOR BEAM WITH DISCONTINUITY POINT

The results obtained in Section 3 for a plate with hinge or slip line can be very easily
particularized for the case of a beam. Consider then a beam of length / with a hinge or slip
point at x = ¢ within its domain, and denote beam deflection, curvature and bending
moment by w, x and M, respectively. The beam generalized forces R are the shear force Q
and bending moment M. Let the beam be loaded by external lateral pressure p and
concentrated forces R at some specified points and subjected to imposed fields of initial
curvature &' and bending moment M'. The generalized displacements W are prescribed at
fixed points where the beam is supported. The stress-strain relations within the beam
domain and at the discontinuity point are assumed to be of the forms (33) and (34),
respectively.

As for the case of plate, we consider the first variation with respect to the variation of
discontinuity point ocation of the following functional :

]
G= f WM, K, p,w, MY, &) dx+ h(Rq, ws) + D(R;, v, ) (85)
L]

where function / can be specified at all points with prescribed R and W, and ® is specified
at the hinge/slip point. The first variation of functional (85) follows from (42), and then it
is expressed by
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i
oG = J WP, +w)0p+ [ s — (0 =K LISM + W — (k" — ") Z]0K'} dix

&

+ IV MR ] = [pw ] = R, — R | Os + [@, — (=t H ., (e, +d,¢,)  (86)
where d,¢, denotes the variation of material parameters of hinge or slip point due to variation
of its position. The adjoint state fields are obtained here as the solution of adjoint beam
with the following boundary conditions and imposed initial fields (cf. (43)):

W= —hp, Rish,. & =W, M"'=W¥,

pr=¥Y, for0gx<gtl "= Gyp. R"= ¢, atx=y, (87)

whereas the stress-strain relations are of the form similar to (36).

For the particular forms of functional G coinciding with beam complementary or
potential energies, the sensitivity expression (86) can be expressed in terms of primary
solutions only, similarly to the way it was shown in Section 3.2 for the case of plate.

7. ILLUSTRATIVE EXAMPLES

To illustrate the analysis presented in previous sections let us consider some simple
disk, beam and plate examples in which the sensitivity analysis with respect to shape of
discontinuity line or location of discontinuity points for some global functionals will be
performed using the analytical and numerical methods of analysis.

Example 1

Consider a circular disk of external radius r, with a central hole of radius r, composed
of two different lincar clastic materials with clastic constants £, v, and E,, v,, respectively,
These materials are separated by a dilatancy line of radius R and constant stiffness ¢ (Fig.
4). The disk is rigidly supported along outer edge and loaded by the uniform pressure p,
along hole edge. Furthermore, the disk is subjected to the imposed ficld of initial strains
caused by temperature field 7. The inner and outer temperatures 7, and T, are preseribed
on both disk edges. The thermal conductivities and coefficients of thermal expansion of
both materials are denoted by A, . and 4, x,. respectively. Due to geometrical and
mechanical symmetry, the nonvanishing stress components within both disk domains are
radial and circumferential generalized stresses N, V. and V,, N, while the radial dis-
placements are denoted by ., and . The interface traction N, along the dilatancy line is
proportional to the jump of radial displacements und can be written as

N(R) = ct(R} = cfuR) = (R)}]. (88)

The optimization problem can now be formulated as follows : for various combinations of
inner pressure and initial strains caused by prescribed boundary temperatures find the
optimal locations of the dilatancy line, which minimize the total elastic stress energy of the
disk. As it was shown in Section 4, this energy provides a good compromise measure of

Fig. 4. Circular disk with dilatancy hne.
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structural behaviour in the case of conflicting interaction of external load and initial
distortions. In view of (75), the total elastic stress energy is now expressed as

R l e
’m f (Va4 N =200+ V)N NyJrdr+ == | [(Ne+Ny)?
2 s 2Ee R

LY

1 .
—=2(1+v )N N.]Jrdr+ ZN;R — min. (89)

The optimality condition follows from (56) and in view of (20) and (89) it can be written
in the form

oW = J‘r'a(N,+NJ)6Tr dr— {[ W] — ([N ]— N[ ]+ wT) % +N? [[u,]]}RéR =0

(90)

where 5T denotes the variation of temperature field within disk domain. The adjoint disk
satisfies now the homogencous boundary conditions on both edges and is subjected to the
imposed field of initial strains, which are

1 |
C‘r" = "'(NI—VN() = C:v C.‘-v" = E(Nr—VNr) = B: (91)

|

where & and & are the clastic part of total strains &, and ¢, of primary disk. Furthermore,
along the dilatancy line the initial jump of radial displacements is introduced, namely

N NR
t(R) = = v(R). 92)

Solving the primary and adjoint problems, the value of functional #” and its derivative
d# " [3R were calculated for various locations of dilatancy line. Figure 5 shows the results
of calculations for two particular cases of loading conditions for a disk of radii r, = 0.2 m
and r, = 1.0 m. It was assumed that the disk was made of steel and aluminium with the
following material data: E, = 2.1 x 10° MPa, v, =029, , = 1.6 x 1073 °C~"', 4, = 3.6 cal
ms '°C 'and £. = 0.7x 10° MPa, v, =0.33,a, = 2.3x 10°*°C~', A, = S5calms~'°C~".
The stiffness of dilatancy line was assumed to be ¢ = 1.4 x 10°* MPa m~"'. The outer edge
of disk was rigidly supported and kept in the temperature T, = 0°C.

] 4G/dR
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’_’-”T,//
'1 y 000
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Fig. 5. Total elastic stress energy of disk and its derivative versus location of dilatancy line.
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Fig. 6. Circular plate with hinge line.

The plots of total elastic stress energy (89) and its derivative calculated by using
eqn (50} for various radii R of dilutancy line. for the case of vanishing internal pressure
p. and prescribed internal temperature 7, = — 100 C, are shown with the solid line in
Fig. 5. It is seen that the functional ¥~ attains its global minimum for the optimal value
of R =10.302 m. The case when the inner edge of disk is subjected to the temperature
T, = — 100 'C and pressure p, = 2000 MPa is shown with the dashed line. For this case of
loading the optimal value of radius of dilatancy line is equal to 0.367 m.

Example 11

Consider now a circular plate of external radius ¢ with hinge line of radius R (Fig. 6).
The plate is made of lincar plastic material and its bending rigidity is denoted by D, while
the hinge line has a constant stiffness ¢. The outer edge of plate is rigidly supported and the
uniform lateral pressure p, as well as an imposed fickd of constant initial distortion
K, = K, = &', is applicd to the plate. These initial distortions can be caused. for instance, by
a difference in temperature between lower and upper plate surfaces. The nonvanishing stress
components within both plate domains are denoted by A, M, and M. M. while the
deflections are w, and w.. The shear force @ is continuous along the hinge hne and the
normal moment M, transformed through this line 1s proportional to the jump of normal
derivatives of deflection fields, namely

M, = M, (R) = M (R) = c(w,, —we,). (93)

We cin now formulate the following optimization problem: for various combinations of
lateral pressure p and initial curvature &' find the optimal radius of the hinge line, which
minimizes the maximum eifective moment within plate domain:

min.
Y &3

0~ «

{m ML) = MMM, } 94

In view of {60), the local objective function (94) can be converted to the integral form and
the problem can be stated as follows :

@ in 1] e L Lo
min. G =G'" = {j Moy dr} = {j (\//M,:+Mf—~M,M\ )y'r dr} (95)
- (} {.

)

where nis even and tending to infinity. The optimality condition of the problem (95) follows
from eqns {(56) and is simplified to the form

= | .
3:G = -G ""3,G =0 (96)
"

where .G is expressed by (42). Thus, it follows from (96) and (42) that the optimality
condition of the problem considered can be written in the form
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The adjoint fields w*, M* appearing in (97), are obtained as the solution for the adjoint
plate with homogeneous boundary conditions, subjected to the imposed ficld of initial
curvature ' following on from (43), that is

K= Moy, = nMITH M, = IM,), K= Miy = nM?I (M, - iM,). (98)

The results of the numerical solution of optimality condition (97) are shown in Fig. 7,
where the plot of the optimal radius of the hinge line versus the ratio of initial curvature to
lateral pressure is given for different values of hinge stiffness. In Fig. 8 the distribution of
effective moment along the radius of the plate with optimal location of hinge line is given
for three different values of hinge stiffness, and Dx'/pa® = —0.1. The similar plot for a
clamped plate without any hinge line is also shown. It is observed that on introducing the
optimal hinge line within the plate domain, the maximal effective moment in its domain is
reduced by about 35% in comparison with the plate without any hinges.
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Example 111

As the last example, consider a beam of span / and constant rigidity D, clamped at
both ends (Fig. 9), for which the sensitivities can be expressed in analytical form. A uniform
load p is applied to the beam and initial distortions are imposed in the form of initial
curvature x' within its domain and deflection w, at its end B. For various combinations of
loading and distortion we are looking for the optimal location s of the free hinge C, which
will minimize the total elastic stress energy of the beam

1 1 A 2
W o= J W(M)dx = J Z_ dx — min. (99)
] U]

The optimality condition for the problem (99) follows from (50) and (86) and takes the
form

oW’ ’ |
‘—S;— o {Q[H';H+Q‘l[u'v“ﬂ}|x=] = 0 (100)

where, according to (87). the adjoint beam is subjected to initial distortion x™ = oW/
oM = K"
Introducing the nondimensional quantities

. 1‘ K3
K =100 A= 100‘3". z%. ¢ = ; (101)
the solutions of primary and adjoint beams yicld
D 3 1 =28 4316824481 )
N o= I g Y e P b A
QW= 1-3:+352( 200 &Y 8 o
! L—62+6¢1  3(1-2¢) )
) = K - A 102
!I“,,t(-\)n l _35‘*_353 (JA() K 48 f + 200 ( )
and
D 3 [ —2¢ )
is) = — = 5 K A
Q)= -p 1~3¢+3¢-( 300 K+ o
. | —6&+6&1
dut s e SOy 103
0l = gaseee (103)

Now using eqns (102) and (103) in eqn (100), we obtain the following equation::

wWa=0 A C N B X
Wa=0

Fig. 9. Beam with hinge.
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Fig. 10. Optimal hinge location for the interaction of load and initial curvature,

v e 1-2 3-6
A H6ET +4Z-1)(! —6§+6f')P'+(—2—~§K+A)(—§-€-A— %K) =0 (104)

from which the optimal solutions &, can be generated for various combinations of P, K
and A. To present the results let us assume that A and K vary within the interval (-1, + 1),
whereas P varies within {0, 1) and P+ K] = 1. This last normalization assumption guaran-
tees that the whole range — 0 < K/P < + oo will be taken into consideration. The optimal
hinge locations &, following from (104) are presented in Fig. 10a for A = 0 and in Fig.
11a for K = 0.

When the beam is subjected to external load with vanishing initial curvature «' and
support deflection wy, there are two equivalent optimal solutions &, , = l/Zi\/3/6, rep-
resented by points A and C on the ¢ axes in Figs 10a and |la. They correspond to the
stiffest beam, as it is shown in Figs 10b and | Ib, where the total elastic stress energy versus
varying hinge location is plotted. The point B in Figs 10a and lla, for which & = 1/2,
represents the focal maximum of the functional (99). When now the beam is subjected to
the initial curvature only, the optimal solution of (104) is represented by points G and G’
in Fig. 10a, for which ¢, = [/2. This design corresponds to the global maximum of total
clastic stress energy, as can be observed in Fig. 10d. For the simultaneous action of external
load and initial curvature, the optimal hinge location is represented by the curves G'F'CFG
and G’'D’ADG in Fig. 10a, which correspond to global minima of stress energy. The straight
line G'E'DEG in Fig. 10a illustrates the local maxima of this energy. Figure 10c shows the
plot of beam stress energy for simultaneous action of p and &'
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Fig. 1. Optimal hinge location for the interaction of load and support deflection.

Let us now discuss the case when the beam is subjected to external load p and support
deflection wy. The optimal location of the hinge for vanishing external load is represented
by points H and H’, for which ¢{,,, = 1/2 and the total elastic stress energy attains its global
maximum (cf. Fig. 11d). For simultaneous action of p and w,, the optimal compromise
solutions are illustrated by the curves I'F'CFI and G'D’ADG in Fig. 11a, whereas the
straight line H'E'BEH corresponds to the local maxima of stress energy, as it is shown in
Fig. tlc.

§. CONCLUDING REMARKS

The present analysis supplements the results of previous works, where the problems
of varying external boundaries, interfaces and varying traction discontinuity lines were
considered for disks and plates. In the paper, an extended class of sensitivity analysis and
optimization problems is considered, for which disks, plates and beams with kinematic
discontinuity lines are subjected to both external loads and distortion or boundary dis-
placements. A general variational method to treat the problems of sensitivity analysis is
discussed by considering varying dilatancy, slip or hinge lines within structure domain. The
sensitivities of arbitrary differentiable functionals are expressed explicitly in terms of
primary and adjoint state fields. These expressions can then be used in both analytical
and numerical solutions for optimal design or identification problems.
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The present paper also casts some light on the important design case where both
applied loads and displacements or distortions are imposed on the structure. In such cases
the compromise design should be developed. satisfying both stiffness and stress constraints.

Besides its direct application in sensitivity analysis and structural design, the formalism
of this paper can be used in the theory of mechanisms with rigid or elastic links where
concentrated rotations or slips occur in hinges or hinge lines. The sensitivity of both
kinematic and static fields with respect to hinge location can be performed by following the
present approach. The other area of application is provided by the perfect plasticity model
where hinges or velocity discontinuity lines occur in any failure mechanism and the plastic
dissipation occurs both within plastic zones and along the discontinuity lines. The optimal
design study is then usually associated with variation of such failure mechanisms due to
design modification. Such novel applications will be discussed in separate papers.
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